ISSN: 2320-0294 # STABILITY ANALYSIS OF MATHEMATICAL SYNECOLOGICAL MODEL COMPRISING OF PREY-PREDATOR, HOST-COMMENSAL, MUTUALISM AND NEUTRAL PAIRS-II (THREE OF THE FOUR SPECIES ARE WASHED OUT STATES) ## B. Ravindra Reddy* ### **Abstract** This investigation deals with a mathematical model of a four species (S₁, S₂, S₃ and S₄) Syn-Ecological system (Three of the four species are washed out states). S₂ is a predator surviving on the prey S₁. The predator S₂ is a commensal to the host S₃. The pairs S₂ and S₄, S₁ and S₃ are neutral. The mathematical model equations characterizing the syn-ecosystem constitute a set of four first order non-linear coupled differential equations. There are in all sixteen equilibrium points. Criteria for the asymptotic stability of four of the sixteen equilibrium points: Three of the four species are washed out states only are established in this paper. The linearized equations for the perturbations over the equilibrium points are analyzed to establish the criteria for stability and the trajectories illustrated. ^{*} Department of Mathematics, JNTUH CE, Nachupally, Karimnagar District-505501, India. ISSN: 2320-0294 ### 1. INTRODUCTION Mathematical modeling is an important interdisciplinary activity which involves the study of some aspects of diverse disciplines. Biology, Epidemiodology, Physiology, Ecology, Immunology, Bio-economics, Genetics, Pharmocokinetics are some of those disciplines. This mathematical modeling has raised to the zenith in recent years and spread to all branches of life and drew the attention of every one. Mathematical modeling of ecosystems was initiated by Lotka [9] and by Volterra [18]. The general concept of modeling has been presented in the treatises of Meyer [11], Cushing [4], Paul Colinvaux [11], Freedman [5], Kapur [6, 7]. The ecological interactions can be broadly classified as Prey-Predation, Competition, Mutualism and so on. N.C. Srinivas [17] studied the competitive eco-systems of two species and three species with regard to limited and unlimited resources. Later, Lakshmi Narayan [8] has investigated the two species prey-predator models. Stability analysis of competitive species was carried out by Archana Reddy [3] while Acharyulu [1, 2] investigated Ammensalism between two species. Recently local stability analysis for a two-species ecological mutualism model has been investigated by present author et al [12, 13, 14, 15, 16]. Example for S_1 , S_2 , S_3 and S_4 are Insects, Insectivorous Plants (nephantis, drosera etc.), VAM associated with the plant roots, Soil bacteria respectively. ### 2. BASIC EQUATIONS The model equations for a four species multi-system are given by a set of four non-linear ordinary differential equations as (i) For S_1 : The Prey of S_1 and Neutral to S_3 $$\frac{dN_1}{dt} = a_1 N_1 - a_{11} N_1^2 - a_{12} N_1 N_2 \tag{2.1}$$ (ii) For S_2 : The Predator surviving on S_1 and Commensal to S_3 $$\frac{dN_2}{dt} = a_2N_2 - a_{22}N_2^2 + a_{21}N_2N_1 + a_{23}N_2N_3 \tag{2.2}$$ (iii) For S_3 : The Host of S_2 and Mutual to S_4 $$\frac{dN_3}{dt} = a_3 N_3 - a_{33} N_3^2 + a_{34} N_3 N_4 \tag{2.3}$$ (iv) For S₄: Mutual to S₃ and Neutral to S₂ $$\frac{dN_4}{dt} = a_4 N_4 - a_{44} N_4^2 + a_{43} N_4 N_3 \tag{2.4}$$ with the following notation. N_i (t): Population strengths of the species S_i at time t, i=1, 2, 3, 4. a_i : The natural growth rates of S_i , i = 1,2,3,4 a_{12} , a_{21} : Interaction (Prey-Predator) coefficients of S_1 due to S_2 and S_2 due to S_1 a₁₃: Coefficient for commensal for S₁ due to the Host S₃ a₃₄, a₄₃: Mutually interaction between S₃ and S₄ $$K_i$$: $\frac{a_i}{a_{ii}}$: Carrying capacities of S_i , $i=1, 2, 3, 4$. Further the variables N_1 , N_2 , N_3 , N_4 are non-negative and the model parameters a_1 , a_2 , a_3 , a_4 ; a_{11} , a_{22} , a_{33} , a_{44} ; a_{12} , a_{21} , a_{13} , a_{24} are assumed to be non-negative constants. ### 3. EQUILIBRIUM STATES The system under investigation has sixteen equilibrium states defined by $$\frac{dN_i}{dt} = 0, i = 1, 2, 3, 4 \tag{3.1}$$ are given in the following table. **I.** Fully washed out state: E₁: $$\overline{N_1} = 0, \overline{N_2} = 0, \overline{N_3} = 0, \overline{N_4} = 0$$ II. States in which three of the four species are washed out and fourth is surviving E₂: $$\overline{N_1} = 0, \overline{N_2} = 0, \overline{N_3} = 0, \overline{N_4} = \frac{a_4}{a_{44}}$$ E₃: $$\overline{N_1} = 0, \overline{N_2} = 0, \overline{N_3} = \frac{a_3}{a_{22}}, \overline{N_4} = 0$$ E₄: $$\overline{N_1} = 0, \overline{N_2} = \frac{a_2}{a_{22}}, \overline{N_3} = 0, \overline{N_4} = 0$$ E₅: $$\overline{N_1} = \frac{a_1}{a_{11}}, \overline{N_2} = 0, \overline{N_3} = 0, \overline{N_4} = 0$$ III. States in which two of the four species are washed out while the other two are surviving E₆: $$\overline{N_1} = 0, \overline{N_2} = 0, \overline{N_3} = \frac{a_4 a_{34} + a_3 a_{44}}{a_{33} a_{44} - a_{34} a_{43}}, \overline{N_4} = \frac{a_3 a_{43} + a_4 a_{33}}{a_{33} a_{44} - a_{34} a_{43}}$$ This state exists only when $a_{33}a_{44} - a_{34}a_{43} > 0$ E₇: $$\overline{N_1} = 0, \overline{N_2} = \frac{a_2}{a_{22}}, \overline{N_3} = 0, \overline{N_4} = \frac{a_4}{a_{44}}$$ E₈: $$\overline{N_1} = 0, \overline{N_2} = \frac{a_3}{a_{22}} \frac{a_{23}}{a_{33}} + \frac{a_2}{a_{22}}, \overline{N_3} = \frac{a_3}{a_{33}}, \overline{N_4} = 0$$ E₉: $$\overline{N}_1 = \frac{a_1}{a_{11}}, \overline{N}_2 = 0, \overline{N}_3 = 0, \overline{N}_4 = \frac{a_4}{a_{44}}$$ E₁₀: $$\overline{N}_1 = \frac{a_1}{a_{11}}, \overline{N}_2 = 0, \overline{N}_3 = \frac{a_3}{a_{33}}, \overline{N}_4 = 0$$ E₁₁: $$\overline{N_1} = \frac{a_1 a_{22} - a_2 a_{12}}{a_{11} a_{22} + a_{12} a_{21}}, \overline{N_2} = \frac{a_1 a_{21} + a_2 a_{11}}{a_{11} a_{22} + a_{12} a_{21}}, \overline{N_3} = 0, \overline{N_4} = 0$$ This state exists only when $a_1 a_{22} - a_2 a_{12} > 0$ IV. States in which one of the four species is washed out while the other three are surviving $$\overline{N_1} = 0, \overline{N_2} = \frac{a_{23}(a_4 a_{34} + a_3 a_{44})}{a_{22}(a_{33} a_{44} - a_{34} a_{43})} + \frac{a_2}{a_{22}}, \overline{N_3} = \frac{a_4 a_{34} + a_3 a_{44}}{a_{33} a_{44} - a_{34} a_{43}},$$ 2: E_{12} : $$\overline{N_4} = \frac{a_4 a_{33} + a_3 a_{43}}{a_{33} a_{44} - a_{34} a_{43}}$$ This state exists only when $a_{33}a_{44} - a_{34}a_{43} > 0$ E₁₃: $$\overline{N_1} = \frac{a_1}{a_{11}}, \overline{N_2} = 0, \overline{N_3} = \frac{a_4 a_{34} + a_3 a_{44}}{a_{33} a_{44} - a_{34} a_{43}}, \overline{N_4} = \frac{a_4 a_{33} + a_3 a_{43}}{a_{33} a_{44} - a_{34} a_{43}}$$ This state exists only when $(a_{33}a_{44} - a_{34}a_{43}) > 0$ E₁₄: $$\overline{N_1} = \frac{a_1 a_{22} - a_2 a_{12}}{a_{11} a_{22} + a_{12} a_{21}}, \overline{N_2} = \frac{a_1 a_{21} + a_2 a_{11}}{a_{11} a_{22} + a_{12} a_{21}}, \overline{N_3} = 0, \overline{N_4} = \frac{a_4}{a_{44}}$$ This state exists only when $a_1a_{22} - a_2a_{12} > 0$ E₁₅: $$\overline{N_1} = \frac{\beta_4}{\beta_1}, \overline{N_2} = \frac{\beta_5}{\beta_1}, \overline{N_3} = \frac{a_3}{a_{33}}, \overline{N_4} = 0$$ where $$\beta_1 = a_{33}(a_{11}a_{22} + a_{12}a_{21}), \ \beta_4 = a_{33}(a_1a_{22} - a_2a_{12}) - a_3a_{23}a_{12}$$ $$\beta_5 = a_{33}(a_1a_{21} + a_2a_{11}) + a_3a_{23}a_{11}$$ This state exists only when $\beta_4 > 0$ V. The co-existent state (or) Normal steady state E₁₆: $$\overline{N}_1 = \frac{\gamma_1 + a_{12}a_{23}\gamma_2}{\gamma_3(a_{33}a_{44} - a_{34}a_{43})}, \overline{N}_2 = \frac{\gamma_4 + a_{11}a_{23}\gamma_2}{\gamma_3(a_{33}a_{44} - a_{34}a_{43})},$$ $$\overline{N}_3 = \frac{a_4a_{34} + a_3a_{44}}{a_{33}a_{44} - a_{34}a_{43}}, \overline{N}_4 = \frac{a_4a_{33} + a_3a_{43}}{a_{33}a_{44} - a_{34}a_{43}}$$ Where $$\gamma_1 = (a_1 a_{22} + a_2 a_{12})(a_{33} a_{44} - a_{34} a_{43}), \ \gamma_2 = a_3 a_{44} + a_4 a_{34}$$ $$\gamma_3 = a_{11} a_{22} + a_{12} a_{21}, \ \gamma_4 = (a_1 a_{21} - a_2 a_{11})(a_{33} a_{44} - a_{34} a_{43})$$ This state exists only when $(a_1a_{21} - a_2a_{11}) > 0$ and $(a_{33}a_{44} - a_{34}a_{43}) > 0$. The present paper deals with three of the four species are washed out states only. The stability of the other equilibrium states will be presented in the forth coming communications. # 4. STABILITY OF THREE OF THE FOUR SPECIES WASHED OUT EQUILIBRIUM STATES (Sl. Nos 2,3,4,5 in the above Equilibrium States) ### 4.1 Stability of the Equilibrium State E₂: $$\overline{N_1} = 0, \overline{N_2} = 0, \overline{N_3} = 0, \overline{N_4} = \frac{a_4}{a_{44}}$$ (4.1.1) Substituting (4.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of u_1 , u_2 , u_3 , u_4 , we get $$\frac{du_1}{dt} = a_1 u_1 (4.1.2) \frac{du_2}{dt} = a_2 u_2 (4.1.3)$$ $$\frac{du_3}{dt} = l_3 u_3 \qquad (4.1.4) \qquad \frac{du_4}{dt} = -a_4 u_4 + \frac{a_{43} a_4}{a_{44}} u_3 \qquad (4.1.5)$$ Here $$l_3 = a_3 + \frac{a_{34}a_4}{a_{44}}$$ (4.1.6) The characteristic equation of which is $$(\lambda - a_1)(\lambda - a_2)(\lambda - l_3)(\lambda + a_4) = 0 \tag{4.1.7}$$ The roots a_1 , a_2 , l_3 are positive and $-a_4$ is negative. Hence the steady state is unstable. The solutions of the equations (4.1.2), (4.1.3), (4.1.4), (4.1.5) are $$u_1 = u_{10}e^{a_1t} (4.1.8)$$ $$u_2 = u_{20}e^{a_2t} (4.1.9)$$ $$u_3 = u_{30}e^{l_3t} (4.1.10)$$ $$u_4 = \left[u_{40} - \frac{a_{43}a_4u_{30}}{a_{44}(l_3 + a_4)}\right]e^{-a_4t} + \frac{a_{43}a_4u_{30}}{a_{44}(l_3 + a_4)}e^{l_3t}$$ (4.1.11) where u_{10} , u_{20} , u_{30} , u_{40} are the initial values of u_1 , u_2 , u_3 , u_4 respectively. There would arise in all 576 cases depending upon the ordering of the magnitudes of the growth rates a_1 , a_2 , a_3 , a_4 and the initial values of the perturbations $u_{10}(t)$, $u_{20}(t)$, $u_{30}(t)$, $u_{40}(t)$ of the species S_1 , S_2 , S_3 , S_4 . Of these 576 situations some typical variations are illustrated through respective solution curves that would facilitate to make some reasonable observations. The solutions are illustrated in figures. **Case (i):** If $$u_{30} < u_{40} < u_{20} < u_{10}$$ and $a_3 < a_2 < a_4 < a_1$ In this case initially S_4 dominates the Predator (S_2) and the (S_3) of S_2 till the time instant t^*_{24} , t^*_{34} respectively and thereafter the dominance is reversed. Also the Predator dominates the host (S_3) of S_2 till the time instant t^*_{32} and thereafter the dominance is reversed. Fig. 1 **Case (ii):** If $u_{20} < u_{30} < u_{40} < u_{10}$ and $l_3 < a_2 < a_1 < a_4$ In this case initially S_4 dominates the host (S_3) of S_2 and the Predator (S_2) till the time instant t^*_{34} , t^*_{24} respectively and thereafter the dominance is reversed. Also the host (S_3) of S_2 dominates the Predator (S_2) till the time instant t^*_{23} and thereafter the dominance is reversed. ### Fig. 2 ### 4.2 Stability of the Equilibrium State E₃: Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{u}_4 , we get $$\frac{du_1}{dt} = a_1 u_1 (4.2.1) \frac{du_2}{dt} = m_2 u_2 (4.2.2)$$ $$\frac{du_3}{dt} = -a_3 u_3 + \frac{a_{34} a_3}{a_{33}} u_4 \qquad (4.2.3) \qquad \frac{du_4}{dt} = n_4 u_4 \qquad (4.2.4)$$ Here $$m_2 = a_2 + \frac{a_{23}a_3}{a_{33}}$$, $n_4 = a_4 + \frac{a_{43}a_3}{a_{33}}$ The characteristic equation of which is $$(\lambda - a_1)(\lambda - m_2)(\lambda + a_3)(\lambda - n_4) = 0 (4.2.5)$$ The roots a_1 , m_2 , n_4 are positive and $-a_3$ is negative. Hence the steady state is unstable. The solutions of the equations (4.2.1), (4.2.2), (4.2.3), (4.2.4) are $$u_1 = u_{10}e^{a_1t} (4.2.6)$$ $$u_2 = u_{20}e^{m_2t} (4.2.7)$$ $$u_3 = \left[u_{30} - \frac{a_{34}a_3u_{40}}{a_{33}(n_4 + a_3)}\right]e^{-a_3t} + \frac{a_{34}a_3u_{40}}{a_{33}(n_4 + a_3)}e^{n_4t}$$ (4.2.8) $$u_4 = u_{40}e^{n_4t} (4.2.9)$$ The solutions are illustrated in figures. Case (i): If $u_{40} < u_{10} < u_{20} < u_{30}$ and $m_2 < a_3 < a_1 < n_4$ In this case initially the host (S_3) of S_2 dominates S_4 till the time instant t^*_{43} and thereafter the dominance is reversed. Also the Predator (S_2) dominates the Prey (S_1) and S_4 till the time instant t^*_{12} , t^*_{42} respectively and the dominance gets reversed thereafter. Similarly the Prey (S_1) dominates S_4 till the time instant t^*_{41} and thereafter the dominance is reversed. A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Inc | Indexed & Listed at: Ulrich's Periodicals Directory © U.S.A. Open J. Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. ISSN: 2320-0294 Case (ii): If $u_{10} < u_{20} < u_{30} < u_{40}$ and $n_4 < a_1 < a_3 < m_2$ In this case initially S_4 dominates the Predator (S_2) till the instant $t^*_{\ 24}$ and thereafter the dominance is reversed. Also host (S_3) of S_2 dominates the Predator (S_2) and the Prey till the time instant $t^*_{\ 23}$, $t^*_{\ 13}$ respectively and the dominance gets reversed thereafter. Fig. 4 ### **4.3 Stability of the Equilibrium State E₄:** Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{u}_4 , we get $$\frac{du_1}{dt} = r_1 u_1 \qquad (4.3.1) \qquad \frac{du_2}{dt} = -a_2 u_2 + \frac{a_{21} a_2}{a_{22}} u_1 + \frac{a_{23} a_2}{a_{22}} u_3 \qquad (4.3.2)$$ $$\frac{du_3}{dt} = a_3 u_3 (4.3.3) \frac{du_4}{dt} = a_4 u_4 (4.3.4)$$ Here $$r_1 = a_1 - \frac{a_{12}a_2}{a_{22}}$$ (4.3.5) The characteristic equation of which is $$(\lambda - r_1)(\lambda + a_2)(\lambda - a_3)(\lambda - a_4) = 0 \tag{4.3.6}$$ Case (A): When $r_1 < 0$ (i.e., when $\frac{a_1}{a_2} < \frac{a_{12}}{a_{22}}$) The roots r_1 , $-a_2$ are negative and a_3 , a_4 are positive. Hence the equilibrium state is unstable. The solutions of the equations (4.3.1) (4.3.2), (4.3.3), (4.3.4) are $$u_1 = u_{10}e^{r_1t} (4.3.7)$$ $$u_{2} = \left\{ u_{20} - \left[\frac{a_{21}a_{2}u_{10}}{a_{22}(r_{1} + a_{2})} + \frac{a_{23}a_{2}u_{30}}{a_{22}(a_{2} + a_{3})} \right] \right\} e^{-a_{2}t} + \frac{a_{21}a_{2}u_{10}}{a_{22}(r_{1} + a_{2})} e^{r_{1}t} + \frac{a_{23}a_{2}u_{30}}{a_{22}(a_{2} + a_{3})} e^{a_{3}t}$$ $$(4.3.8)$$ $$u_3 = u_{30}e^{a_3t} (4.3.9)$$ $$u_4 = u_{40}e^{a_4t} (4.3.10)$$ The solutions are illustrated in figures. **Case (i):** If $u_{20} < u_{40} < u_{10} < u_{30}$ and $a_4 < a_3 < a_2 < r_1$ In this case initially the Prey (S_1) dominates S_4 and the Predator (S_2) till the time instant t^*_{41} , t^*_{21} respectively and thereafter the dominance is reversed. Fig. 5 **Case (ii):** If $u_{30} < u_{20} < u_{40} < u_{10}$ and $a_3 < r_1 < a_4 < a_2$ In this case initially the Prey (S_1) dominates S_4 , the Predator (S_2) and the host (S_3) of S_2 till the time instant t^*_{41} , t^*_{21} , t^*_{31} respectively and thereafter the dominance is reversed. Also the Predator (S_2) dominates the host (S_3) of S_2 till the time instant t^*_{32} and thereafter the dominance is reversed. Fig.6 Case (B): When $$r_1 > 0$$ (i.e., when $\frac{a_1}{a_2} > \frac{a_{12}}{a_{22}}$) The roots r_1 , a_3 , a_4 are positive and $-a_2$ is negative. Hence the equilibrium state in unstable. In this case the solutions are same as in case (A) and the solutions are illustrated in figures. Case (i): If $u_{20} < u_{30} < u_{40} < u_{10}$ and $a_3 < a_4 < a_2 < r_1$ Fig. 7 In this case initially S_4 dominates the Predator (S_2) till the time instant t^*_{24} and thereafter the dominance is reversed. Also the host (S_3) of S_2 dominates the Predator (S_2) till the time instant t^*_{23} and thereafter the dominance is reversed. **Case (ii):** If $u_{40} < u_{30} < u_{10} < u_{20}$ and $a_2 < a_3 < r_1 < a_4$ In this case initially the Predator (S_2) dominates the Prey (S_{\downarrow}) , the host (S₃) of S₂ and S₄ till the time instant t_{12} , t_{32} , t_{42} respectively and thereafter the dominance is reversed. Also the Prey (S_1) dominates S_4 till the time instant t_{41}^* and the dominance gets reversed thereafter. Similarly the host (S₃) of S_2 dominates S_4 till the time instant t_{43} and thereafter the dominance is reversed. Fig. 8 ### 4.4 Stability of the Equilibrium State E₅: Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{u}_4 , we get $$\frac{du_1}{dt} = -a_1 u_1 - \frac{a_{12} a_1}{a_{11}} u_2 \qquad (4.4.1) \qquad \frac{du_2}{dt} = q_2 u_2 \qquad (4.4.2)$$ $$\frac{du_3}{dt} = a_3 u_3 \qquad (4.4.3) \qquad \frac{du_4}{dt} = a_4 u_4 \qquad (4.4.4)$$ $$\frac{du_3}{dt} = a_3 u_3 \tag{4.4.4}$$ Here $$q_2 = a_2 + \frac{a_{21}a_1}{a_{11}}$$ (4.4.5) The characteristic equation of which is $$(\lambda + a_1)(\lambda - q_2)(\lambda - a_3)(\lambda - a_4) = 0 (4.4.6)$$ The roots q_2 , a_3 , a_4 are positive and $-a_1$ is negative. Hence the equilibrium state in unstable. The solutions of the equations (4.4.1) (4.4.2), (4.4.3), (4.4.4) are $$u_{1} = \left[u_{10} + \frac{a_{1}a_{12}u_{20}}{a_{11}(q_{2} + a_{1})}\right]e^{-a_{1}t} - \frac{a_{1}a_{12}u_{20}}{a_{11}(q_{2} + a_{1})}e^{q_{2}t}$$ $$(4.4.7)$$ $$u_2 = u_{20}e^{q_2t}$$ (4.4.8) $u_3 = u_{30}e^{a_3t}$ (4.4.9) $$u_4 = u_{40}e^{a_4t} (4.4.10)$$ The solutions are illustrated in figures. **Case (i):** If $u_{20} < u_{40} < u_{30} < u_{10}$ and $a_4 < a_1 < q_2 < a_3$ In this case initially the Prey (S_1) dominates the host (S_3) of S_2 , S_4 and the Predator (S_2) till the time instant t_{31}^* , t_{41}^* , t_{21}^* respectively and thereafter the dominance is reversed. Also S₄ dominates the Predator (S_2) till the time instant t_{24}^* and thereafter the dominance is reversed. **Case (ii):** If $u_{30} < u_{10} < u_{40} < u_{20}$ and $a_4 < a_3 < a_1 < q_2$ In this case initially S_4 dominates the host (S_3) of S_2 till the time instant t^*_{34} and the dominance gets reversed thereafter. Also the Prey (S_1) dominates the host (S_3) of S_2 till the time instant t^*_{31} and thereafter the dominance is reversed. Fig. 9 Fig. 10 ### **REFERENCES** - [1] Acharyulu K.V.L.N and Pattabhi Ramacharyulu N. Ch: On The Stability of an Ammensal-Enemy Harvested Species Pair with Limited Resources, Int. J. Open Problems Compt. Math (IJOPCM), Vol. 3, No. 2, pp.241-266, June 2010. - [2] Acharyulu K.V.L.N and Rama Gopal N: Numerical Approach to a Mathematical Model of Three species ecological Ammensalism, Int. J. of Mathematical Archive, 3(6), pp.2273-2282, 2012. - [3] Archana Reddy R: On the stability of some mathematical models in biosciences interacting species, Ph.D thesis, 2009, JNTU. - [4] Cushing J. M: Integro differential equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, Vol. 20, Springer Verlag, Heidelberg, 1977. - [5] Freedman H.I: Deterministic Mathematical Models in Population Ecology, Marcel Decker, New York, 1980. - [6] Kapur J.N: Mathematical Modelling, Wiley Eastern, 1988. - [7] Kapur J.N: Mathematical Models in Biology and Medicine Affiliated East West, 1985. - [8] Lakshmi Narayan K: A Mathematical study of Prey-Predator Ecological Models with a partial covers for the prey and alternative food for the predator, Ph.D thesis, 2004, J.N.T.University. - [9] Lotka A.j: Elements of Physical biology, Williams and Wilkins, Baltimore, 1925. # March 2013 ### Volume 2, Issue 1 ISSN: 2320-0294 - [10] Meyer W.J: Concepts of Mathematical Modelling, Mc Graw Hill, 1985. - [11] Paul Colinvaux: Ecology, John Wiley and Sons Inc., New York, 1986. - [12] Ravindra Reddy B.: A Study on mathematical models of ecological mutualism between two Interacting Species, Ph.D Thesis, O.U, 2008. - [13] Ravindra Reddy B, Lakshmi Narayan K, and Pattabhiramacharyulu N.Ch: A model of two mutually interacting species with limited resources for both the species. Int. J.of Engg. Research & Indu. Appls, Vol.2, No.II (2009), pp 281-291. - [14] Ravindra Reddy B, Lakshmi Narayan K, and Pattabhiramacharyulu N.Ch: A model of two mutually interacting species with limited resources and harvesting of both the species at a constant rate. International J. of Math. Sci & Engg. Appls. (IJMSEA), Vol. 4, No. III (August, 2010), pp. 97-106. - [15] Ravindra Reddy B, Srilatha R, Lakshmi Narayan K., and Pattabhiramachryulu N.Ch: A model of two mutually interacting species with Harvesting, Atti Della Fondazione Giorgio Ronchi, Anno LXVI, 2011 N. 3, 317-331. - [16] Ravindra Reddy B: A Model of two mutually interacting Species with Mortality Rate for the Second Species, Advances in Applied Science Research, 2012, 3(2):757-764. - [17] Srinivas N.C: Some Mathematical aspects of modeling in Bio Medical Sciences, Ph.D thesis, 1991, Kakatiya University. - [18] Volterra V: Leconssen la theorie mathematique de la leitte pou lavie, Gauthier Villars Paris, 1931.